Engineering with Electromagnets

NSTA STEM Forum San Francisco, CA July 25, 2019

Janet Bellantoni Tim Hurt

Session Goals

 Investigate a hands-on middle school physical science engineering activity aligned with NGSS.

 Reflect on how teachers can support classroom instruction of engineering and assess student ability to use an engineering design process.

NGSS Performance Expectations

Engineering

MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Physical Science

MS-PS2-3: Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

NGSS Science and Engineering Practices

Developing and Using Models (ETS 1-4, PS 3-2) Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs.

Asking Questions and Defining Problems (PS 2-3, ETS 1-1) Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.

Engaging in Argument from Evidence (PS 2-4) Evaluate competing design solutions based on jointly developed and agreed-upon design criteria.

Analyze and Interpret Data (ETS 1-3) Analyze and interpret data to determine similarities and differences in findings.

NGSS Crosscutting Concepts

Cause and Effect (PS 2-3, 2-5) Cause and effect relationships may be used to predict phenomena in natural or designed systems.

Engaging in Argument from Evidence (PS 2-4) Evaluate competing design solutions based on jointly developed and agreed-upon design criteria

Engineering Design vs Scientific Inquiry

- A scientist pursues understanding of the natural world by using evidence to answer a question.
- An engineer uses science and tools to build a product that solves a practical problem.

NGSS Middle School Engineering Design

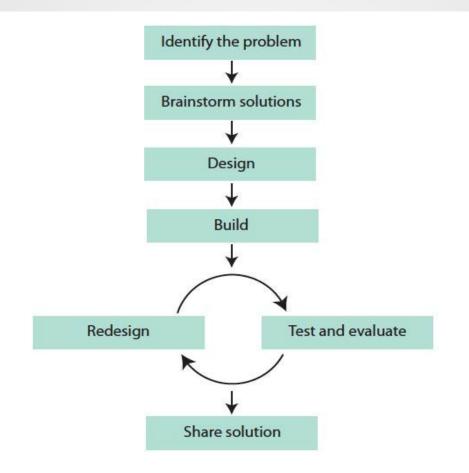
Defining the Problem

- How will end user decide whether or not the design is successful?
- How does the design effect the broader society and the environment?

Developing Possible Solutions

- address generating design solutions (elementary)
- evaluating using systematic method (middle)

Improving Designs


An iterative process of test, re-design, re-test to optimize the solution

Page 85 NGSS, Standards Volume 1

SEPUP's Engineering Design Process

Electromagnets

Traditional Method:

- Battery (usually D-cell)
- Wire
- Iron Nail
- Paperclips

Pros:

- Relatively Simple
- Effective at showing electromagnetism Cons:
- The circuit heats up quickly (Battery drains quickly)
- Not very powerful

Electromagnets

Capacitor Method:

- Same as traditional with an added capacitor Pros:
- Stronger magnetic field than traditional method
- Essentially no circuit heating (Batteries last longer)
- Allows for iterative designs

Cons:

Less simple to use

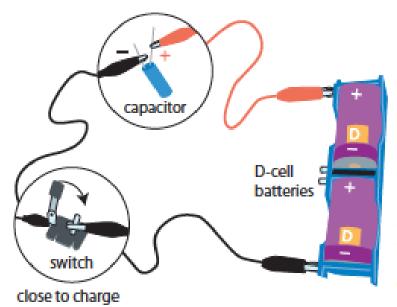
What is a Capacitor?

A **capacitor** is a device that stores electric charge. When connected in a closed circuit, a charged capacitor will discharge its stored charge through the circuit. This creates a current in the circuit until the capacitor is discharged.

What does a capacitor do differently than a battery?

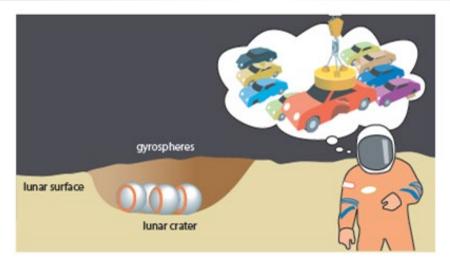
- The current it generates is higher than a battery of the same voltage because batteries have higher internal resistances.
- Once the capacitor is discharged, the current stops which prevents wires from over heating or batteries from draining

What Students Know


Going into this activity, students already know:

- Related to the materials:
 - How to charge the capacitor
 - Capacitors discharge quickly (less than 10 seconds)
 - How to wind the coils
- Electromagnetic properties:
 - Higher turn density = Higher magnetic field strength
 - Higher current = Higher magnetic field strength

Charging the Capacitor

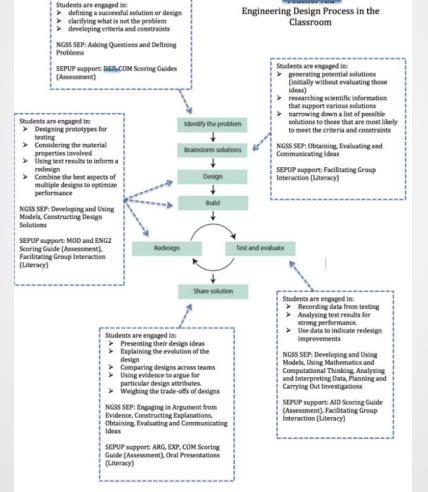

Identify the + and – wire leads on the capacitor. The + lead is longer. Connect – to – and + to +. Make sure that the the metal clips are not touching each other during charging or discharging.

Gyrosphere Rescue

- Students are revisiting a scenario but we'll just focus on the design criteria and constraints.
- Read through the Procedure and work with your team to come up with your design(s)
- Record your design process so that we can use the rubric.

Gyrosphere Rescue Assessments

- Procedure 1-3: Three-dimensional assessment of ETS1-4
- Analysis Items 1 and 2: Student reflection on Engineering Design Process
- Analysis Item 3: Three-diimensional assessment of PS2-3



Implementing EDP in the Classroom

Tooshor Aid

See handout

Engineering Design Solutions assessment rubric

See handout

Level	Description
Level 4 Complete and correct	The student • uses all appropriate steps of the engineering design cycle, AND • meets all of the criteria within the defined constraints, AND • uses a combination of scientific concepts, data, and trial and error. • communicates the process followed to optimize the design.
Level 3 Almost there	The student • uses all appropriate steps of the engineering design cycle, AND • meets all of the criteria within the defined constraints, AND • uses a combination of scientific concepts, data, and trial and error.
Level 2 On the way	The student • uses some of steps of the engineering design cycle, AND • meets all of the criteria within the defined constraints, AND • uses a combination of scientific concepts, data, and trial and error.
Level 1 Getting started	The student uses some of the steps of the engineering design cycle, BUT the design does not meet any of the criteria.
Level 0	The student proposes no design or an irrelevant design.
x	The student has no opportunity to respond.

Reflections

- Where was the NGSS engineering design present in the activity?
- How would you/your partner score on the engineering rubric?
- How could this approach for support and assessment be used on other engineering activities?

Wrapping up

Any questions?

Files can be found on NSTA website and *sepuplhs.org/news.html*

