NGSS OVERVIEW

REPRODUCTION

Performance Expectation MS-LS1-4: Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants, respectively.

Performance Expectation MS-LS1-5: Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Performance Expectation MS-LS3-1: Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of an organism.

Performance Expectation MS-LS3-2: Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
1. View and Reflect: Joe's Situation This activity introduces the fictional scenario of Joe, who has learned that he might have a genetic condition. Students engage in the practices of asking ques- tions and obtaining, gathering, and com- municating information as they attempt to understand Joe's story. As they do this, they explore both the causes and effects of a genetic condition, beginning a focus on the crosscutting concepts of cause and effect and structure and function, which run throughout the unit. Also throughout the unit, students apply what they learn to Joe's situation. In the final activity of the unit, they will make a recommenda- tion to Joe.	MS-LS1.B	Asking Questions and Defining Problems Obtaining, Evaluating, and Communicating Information	Cause and Effect Structure and Function Connections to Nature of Science: Science Addresses Questions About the Natural and Material World	ELA/Literacy: RST.6-8.2 WHST.6-8.9 SL.8.1
2. Modeling: Creature Features Students begin to use the practice of developing and using models to show and revise their ideas about genes and inheri- tance of traits. The crosscutting concepts of patterns and cause and effect provide helpful lenses for thinking about the results of an imaginary scenario in which animals are bred to produce two gener- ations of offspring. This activity begins a sequence in which students explore core ideas and concepts related to patterns of inheritance of traits as a result of sexual reproduction. Students also begin to engage in scientific argumentation as they evaluate possible hypotheses.	MS-LS1.B MS-LS3.B	Developing and Using Models Constructing Explanations and Designing Solutions Engaging in Argument from Evidence	Patterns Cause and Effect	ELA/Literacy RST.6-8.7 WHST.6-8.1 WHST.6-8.9 SL.8.1

Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
3. Reading: Reproduction Students engage in the practice of obtain- ing information as they read about the cellular basis of sexual and asexual repro- duction. This information will help them to revise their models and explanations for the inheritance of traits and prepare them for quantitative predictions of the incidence of traits in offspring.	MS-LS1.B MS-LS3.A MS-LS3.B	Constructing Explanations and Designing Solutions Developing and Using Models Obtaining, Evaluating, and Communicating Information	Patterns Cause and Effect	ELA/Literacy: RST.6-8.1 RST.6-8.4 RST.6-8.7 WHST.6-8.2 WHST.6-8.9
4. Investigation: Gene Combo Students use a coin-tossing model to investigate quantitatively the outcomes of breeding a second generation of offspring from heterozygous parents. The cross- cutting concepts of patterns and cause and effect continue to be emphasized. This activity helps students understand how genes determine traits, distinguish between predicted and actual outcomes of such crosses, and further elaborate their model of inheritance of traits. This will lead into activities where students will learn about Mendel's work and will use Punnett squares as another model for pre- dicting the outcomes of genetic crosses.	MS-LS1.B MS-LS3.A MS-LS3.B	Developing and Using Models Constructing Explanations and Designing Solutions Using Math- ematics and Computational Thinking Analyzing and Interpreting Data Engaging in Argument from Evidence	Patterns Cause and Effect Scale, Pro- portion, and Quantity	Mathematics: 6.RP.A.1 ELA/Literacy: RST.6-8.4
5. Problem Solving: Gene Squares This activity introduces the use of Punnett squares as a model for predicting the ratios of both genotypes and pheno- types in the offspring of genetic crosses. Students use crosscutting concepts of patterns and cause and effect as they use Punnett squares to predict outcomes of crosses of various pairs of critters.	MS-LS1.B MS-LS3.A MS-LS3.B	Constructing Explanations and Designing Solutions Developing and Using Models Using Math- ematics and Computational Thinking	Patterns Cause and Effect	Mathematics: 6.RP.A.1 ELA/Literacy RST.6-8.2 RST.6-8.4 RST.6-8.7

Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
6. Reading: Mendel, First Geneticist A reading on Gregor Mendel's investi- gations and the principles of genetics he identified through his work provides a perspective on the history and nature of science and the data analysis, recogni- tion of patterns, and use of mathematics central to this important advancement in explaining how genes cause traits. The reading provides data from Mendel's experiments breeding pea plants and his application of ratios to his analysis and interpretation of his results. Students can compare Mendel's findings, analysis, and model to their own work with the critter model.	MS-LS1.B MS-LS3.A MS-LS3.B	Analyzing and Interpreting Data Using Math- ematics and Computational Thinking Obtaining, Evaluating, and Communicating Information Constructing Explanations and Designing Solutions Connections to Nature of Sci- ence: Science Is a Way of Knowing	Cause and Effect Patterns Scale, Pro- portion, and Quantity	Mathematics: 6.RP.A.1 ELA/Literacy: RST.6-8.7 RST.6-8.9
7. Laboratory: Do Genes Determine Everything? Students are introduced to two traits for seedling color in <i>Nicotiana</i> plants. They are then introduced to experimental design before they plan and conduct an investigation to determine how selected environmental factors affect the phenotype of plant seedlings. They analyze their data to explain the interaction between genetic and environmental factors. They use this experience as the basis for a discussion of the interplay of genetic and environmental factors in determining traits in humans, as well as in plants. The activity provides an opportunity to assess student work related to Performance Expectation MS-LS1-5.	MS-LS1.B MS-LS3.B	Analyzing and Interpreting Data Planning and Conducting Investigations Constructing Explanations and Designing Solutions Connections to Nature of Sci- ence: Science Is a Way of Knowing	Cause and Effect	Mathematics: 6.RP.A.1 6.SP.B.5
8. Reading: Show Me the Genes! Students obtain information from a reading that introduces the location of genes on chromosomes and the number of sets of chromosomes in sex cells and the rest of the body. This information helps explain some of the phenomena related to genes that students have been learning about, and also prepares them for future activities where they will model the cause-and-effect relationships between genes (and mutations) and protein structure and function.	MS-LS1.B MS-LS3.A MS-LS3.B	Developing and Using Models Obtaining, Evaluating, and Communicating Information	Patterns Cause and Effect Structure and Function Scale, Pro- portion, and Quantity	ELA/Literacy: RST.6-8.2 RST.6-8.4 RST.6-8.7 WHST.6-8.2 WHST.6-8.9

Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
9. Investigation: Breeding Critters — More Traits Students model and explain additional patterns of inheritance as they explore cause-and-effect relationships for addi- tional traits of the critters. These patterns help them model and explain the wide variation that can result from sexual reproduction. The activity provides an op- portunity to assess student work related to Performance Expectation MS-LS3-2.	MS-LS1.B MS-LS3.A MS-LS3.B	Constructing Explanations and Designing Solutions Developing and Using Models	Patterns Cause and Effect	Mathematics: 6.SP.B.5 ELA/Literacy: RST.6-8.4
10. Investigation: Animal Behavior Students analyze and interpret data to create arguments that explain behav- ioral and other traits in animals that at first glance seem to be either neutral or perhaps even harmful. By looking for patterns in the data, students develop ar- guments about how these traits cause the individual to have higher reproductive success than those with different traits. The activity provides an opportunity to assess student work related to Perfor- mance Expectation MS-LS1-4, focusing on animal traits. In the next activity, students will focus on plant traits.	MS-LS1.B MS-LS4.C	Engaging in Argument from Evidence Analyzing and Interpreting Data	Patterns Cause and Effect	Mathematics: 6.SP.A.2 6.SP.B.4 ELA/Literacy: RST.6-8.1 WHST.6-8.1
11. Investigation: Plant–Animal Interactions Students obtain information about flower pollination and its importance to plant reproduction. They consider a number of adaptive plant structures and traits that attract animal pollinators. Students construct an argument for how these traits cause the individual plant to have higher reproductive success than plants with different traits. The activity provides an opportunity to assess student work related to Performance Expectation MS-LS1-4, focusing on plant–animal interactions.	MS-LS1.B MS-LS4.C	Engaging in Argument from Evidence Obtaining, Evaluating, and Communicating Information	Cause and Effect Patterns Structure and Function	ELA/Literacy: RST.6-8.1 RI.6.8 WHST.6-8.1

	Activity Description	Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Common Core State Standards
12.	Modeling: How Do Genes Produce Traits? This activity introduces the concept that a gene encodes for a protein, which has a specific function in the cell. These protein functions manifest as traits in the body. Students use a toober and pipe cleaners to model and generate explanations for how a gene's sequence codes for a protein sequence. They continue using this model to explore how the protein sequence determines the protein structure and function. As students model structure and function, they also examine cause-and-effect relationships between gene sequence and protein function.	MS-LS3.A	Developing and Using Models Constructing Explanations and Designing Solutions	Cause and Effect Structure and Function	ELA/Literacy: RST.6-8.7
13.	Modeling: Fault in the Genes Students return to their three-dimen- sional protein models to begin investi- gating the cause-and-effect relationship between mutations and protein structure and function. The activity begins with a game that introduces students to different types of mutations: deletions, additions, and substitutions. Students then make predictions about how differ- ent mutations may affect their protein structure. Using the toobers and pipe cleaners, students model the mutations and the resulting changes to their protein structures. After investigating different types of mutations, students construct explanations for how a mutation in a gene leads to changes in body function, specifically how a mutation in the fibril- lin-1 gene leads to Marfan syndrome symptoms. The activity provides an op- portunity to assess student work related to Performance Expectation MS-LS3-1.	MS-LS3.A MS-LS3.B	Developing and Using Models Constructing Explanations and Designing Solutions Analyzing and Interpreting Data	Cause and Effect Structure and Function	ELA/Literacy: RST.6-8.7
14.	Talking it Over: Advising Joe Students apply what they have learned to Joe's scenario and create a written communication that explains the causes and effects of Marfan syndrome and the actions Joe and his family might take.	MS-LS1.B MS-LS3.A MS-LS3.B	Obtaining, Evaluating, and Communicating Information	Cause and Effect Understandings About the Na- ture of Science: Science Ad- dresses Ques- tions About the Natural and Material World	Mathematics: 6.RP.A.1 ELA/Literacy WHST.6-8.2

Unit Issue: The use of genetic information to make medical and health-related decisions.

each person is unique. Examples explored include physical traits like eye color, genetic conditions like Marfan syndrome, the role of genes and Anchoring Phenomenon: Most people have features more like their biological relatives than most other people, but even within a family, the environment, and behavioral traits in humans and model organisms. Students generate and answer questions such as: What explains the

REPRODUCTION

Driving Questions Guidin	Guidin	Guiding Questions	Activities	PE	Storyline
What determines What questions should whether a person ask his doctor and the will have a genetic counselor? (Activity 1) condition and how they will be affected?	t questio iis doctor selor? (A	What questions should Joe ask his doctor and the genetic counselor? (Activity 1)	1*, 14*	MS-LS3-2	What does an individual with a genetic condition need to know about the science related to their condition?
How do organismsHow are simple inheritinherit traits frompassed from parents totheir biologicaloffspring and then to thparents?generation? (Activity 2)	are simp ed from p ring and ration? (<i>i</i>	How are simple inherited traits passed from parents to their offspring and then to the next generation? (Activity 2)	1*, 2, 3*, 4, 5, 6, 8*, 9*	MS-LS3-2	In some way, information is passed from parents to offspring.
What do cells sexual and as (Activity 3)	t do cells al and as vity 3)	What do cells have to do with sexual and asexual reproduction? (Activity 3)			Cells transmit the genetic information that determines traits to offspring cells.
What happens when two parents with different trait offspring? Why? (Activity	t happen its with d ring? Wh	What happens when two parents with different traits have offspring? Why? (Activity 4)			Patterns can be observed in the offspring from a cross, and these patterns provide evidence of how genes are passed on and interact.
How can we the ratios of the offspring versions of a	can we atios of ffspring ons of a	How can we model and predict the ratios of traits observed in the offspring of parents with two versions of a trait? (Activity 5)			We can use models to predict the ratios of traits in offspring.
What causes the patte can be observed when parents with different offspring? (Activity 6)	t causes be obser ats with	What causes the patterns that can be observed when two parents with different traits have offspring? (Activity 6)			Similar patterns of inheritance have been found for many traits in a variety of organisms, and are useful in understanding heredity.

PHENOMENA, DRIVING QUESTIONS AND SEPUP STORYLINE

PHENOMENA, DRIVING QUESTIONS AND SEPUP STORYLINE

Investigative Phenomena	Driving Questions	Guiding Questions	Activities	PE	Storyline
		How do sex cells transmit genetic information for determining traits to their offspring? (Activity 8)			The location of genetic information on chromosomes, and the behavior of chromosomes during formation of eggs and sperm, explain the patterns of inheritance observed for many traits.
		What causes variation between offspring of the same parents? (Activity 9)			In addition to differences in genes inherited from parents, environmental differences can lead to variation.
Even genetically identical organisms aren't exactly the same.	What other factors besides genes cause the differences between genetically related organisms?	What causes the differences between genetically identical organisms? (Activity 7)	1*, 7, 9*	MS-LS1-5	Environmental factors can lead to differences between organisms, even when those organisms share the same genetic information.
		What causes variation between offspring of the same parents? (Activity 9)			Both genetic and environmental factors can cause variation.
Specialized structures and behaviors are important for organisms to survive and reproduce.	How do inherited behaviors and structures increase the likelihood of successful reproduction?	How do animal behaviors and other traits affect the probability of successful reproduction? (Activity 10)	9*, 10, 11	MS-LS1-4	Genetic factors can affect traits, including animal behavior and structures, needed for successful reproduction of animals.

PHENOMENA, DRIVING QUESTIONS AND SEPUP STORYLINE

Investigative Phenomena	Driving Questions	Guiding Questions	Activities	PE	Storyline
		How do specialized plant structures and traits affect the probability of successful reproduction in plants? (Activity 11)			Genetic factors can affect traits, including animal behaviors and animal and plant structural features (including plant color and scent and animals' ability to detect color and scent), needed for successful reproduction of plants.
Mutations can cause changes in an organism's structure and function, including the	How do mutations cause changes?	How does a gene produce a trait? (Activity 12)	1*, 3*, 8*, 12, 13, 14*	MS-LS3-1	A gene codes for a protein, and the structure of that protein is important for proper function. In Marfan syndrome, the gene affects a protein called fibrillin.
changes observed in hereditary health conditions.		How can a change in a gene, like the gene linked to Marfan syndrome, lead to a change in the function of a person's body? (Activity 13)			A change in a gene can change the structure and function of a protein, such as fibrillin. This explains how the gene affects a person's body.
Some health conditions can be passed from parents to offspring.	What determines whether a person will have a genetic condition and how they will be affected?	What have you learned that could help Joe understand and make choices about his situation if he does have Marfan syndrome? (Activity 14)	1*, 14*	MS-LS3-2	Understanding how genetic and environmental factors interact helps people understand and manage genetic conditions.
* This activity relates to multi	tes to multiple phenoi	ple phenomena and driving questions in the unit and appears in more than one position in this table.	ie unit and ap	pears in more	than one position in this table.

NGSS CORRELATIONS

REPRODUCTION

	Crosscutting Concepts	Activity number
Cause and Effect	Cause and effect relationships may be used to predict phenomena in natural or designed systems.	1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14
Cause and Effect	Phenomena may have more than one cause, and some cause-and-effect relationships in systems can only be described using probability.	7, 9, 10, 11
Patterns	Patterns can be used to identify cause and effect relationships.	2,3,4,5,6,8,9,10, 11
Structure and Function	Complex and microscopic structures and sys- tems can be visualized, modeled, and used to describe how their function depends on the relationships among its parts; therefore, complex natural and designed structures/systems can be analyzed to determine how they function.	1, 8, 11, 12, 13
	Phenomena that can be observed at one scale may not be observable at another scale.	8
Scale, Proportion, and Quantity	Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among differ- ent types of quantities provide information about the magnitude of properties and processes.	4, 6
Connections to the Nature of Science	Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes.	1, 14
Scie	nce and Engineering Practices	Activity number
Analyzing and	Analyze and interpret data to determine similarities and differences in findings.	6,7
Interpreting Data	Analyze and interpret data to provide evidence for phenomena.	4, 10, 13
Asking Questions and Defining Problems	Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.	1
	Ask questions to clarify and/or refine a model, an explanation, or an engineering problem.	1

Scier	nce and Engineering Practices	Activity number
Constructing Explanations and	Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future.	4, 5, 7
Designing Solutions	Construct an explanation that includes qualita- tive or quantitative relationships between vari- ables that predict or describe phenomena.	2, 3, 6, 7
	Apply scientific ideas to construct an explanation for real world phenomena, examples, or events.	9, 12, 13
Developing and Using	Develop a model to predict and/or describe phenomena.	4, 5, 8, 9, 13
Models	Develop a model to describe unobservable mechanisms.	2, 3, 9, 12, 13
Engaging in Argument from Evidence	Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.	2, 4, 10, 11
Obtaining, Evaluating,	Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims and findings.	1, 3, 6, 8, 14
and Communicating Information	Gather, read, and synthesize information from multiple appropriate sources and assess the cred- ibility, accuracy, and possible bias of each publi- cation and methods used, and describe how they are supported or not supported by evidence.	1
Planning and Carrying Out Investigations	Plan an investigation individually and collabo- ratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measure- ments will be recorded, and how many data are needed to support a claim.	7
	Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation.	7
Using Mathematics and Computational Thinking	Apply mathematical concepts and/or processes (e.g., ratio, rate, percent, basic operations, simple algebra) to scientific and engineering questions and problems.	4, 5, 6
Connections to the Nature of Science	Scientific knowledge is based on logical and conceptual connections between evidence and explanations.	6,7

	Disciplinary Core Ideas	Activity number
	Animals engage in characteristic behaviors that increase the odds of reproduction.	9,10
Growth and	Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction.	11
Development of Organisms (LS1.B)	Genetic factors as well as local conditions affect the growth of the adult plant (and other organisms).	1, 7, 11, 14
	Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring.	1, 2, 3, 4, 5, 6, 7, 8, 9, 14
Inheritance of Traits (LS3.A)	Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits.	4, 5, 8, 12, 13, 14
	Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited.	3, 4, 5, 6, 8, 9, 14
Variation of Traits	In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other.	2, 3, 4, 5, 6, 7, 8, 9, 13, 14
(LS3.B)	In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare, mutations may result in changes to the structure and func- tion of proteins. Some changes are beneficial, others harmful, and some neutral to the organ- ism.	3, 5, 7, 8, 13
Adaptation (LS4.C)	Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribu- tion of traits in a population changes.	10, 11

I	Performance Expectations	Activity number
From Molecules to Organisms: Structures and Processes (LS1)	Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. (MS-LS1-4)	10, 11
	Construct a scientific explanation based on evi- dence for how environmental and genetic factors influence the growth of organisms. (MS-LS1-5)	7
Heredity: Inheritance and variation of Traits	Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism. (MS-LS3-1)	13
(LS3)	Develop and use a model to describe why asexu- al reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. (MS-LS3-2)	9

COMMON CORE STATE STANDARDS: CONNECTIONS AND CORRELATIONS

REPRODUCTION

Making Connections in ELA

As with all SEPUP instructional materials, this unit introduces multiple opportunities for students to engage in a range of ELA practices and skills that are important grade-specific goals of the common core state standards and are also essential to the sensemaking students are doing throughout the unit. Specifically, starting with the very first activity, students read about and summarize a fictional scenario (RST.6-8.2) about a student who might have a genetic disorder, which helps initiate their sensemaking about the inheritance of traits. In activity 3, students engage with a reading to obtain information, including scientific vocabulary (RST.6-8.4) as they draw on specific textual evidence (RST.6-8.1) to reflect on their prior knowledge and revise and document (WHST.6-8.9) their developing models and explanations for the inheritance of traits. Additional readings are introduced in activities 6, 8, 10 and 11 as they continue to make sense of sexual reproduction, alleles, how traits can impact reproductive success and the impact of plant-animal interactions on reproduction. In activity 11, students evaluate the reading to construct an argument (RI.6.8) for how the structure of a plant increases its reproductive success by attracting a specific type of pollinator and students document their arguments in writing (WHST.6-8.1). In most readings, technical information is often presented in visual and numerical representations as well as text and students integrate all of this information (RST.6-8.7) as they progress their sensemaking. Moreover, in activity 6, students compare and contrast information from their reading about Mendel's experiments with information they gained from a game simulation they conducted in activity 4 (RST.6-8.9). Collaborative classroom discussion (SL.8.1) plays a key role in activity 2 as students engage in SEPUP's 4-2-1 model for collaborative work to develop and revise their own hypotheses and models to explain the results of genetic crosses in a story about breeding imaginary creatures. The unit culminates with students creating a written communication that explains the causes and effects of the genetic disorder from the fictional scenario they are introduced to in activity 1 (WHST.6-8.2). Specific literacy strategies are embedded throughout the unit to support student development of these ELA skills and practices. In addition, Appendix E: Literacy Strategies in the Student Book contains optional resources to support reading, writing and oral communication.

Common Core State Standards – English Language Arts		Activity number
Reading Informational Text (RI)	Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (RI.6.8)	11

Common Core State Standards – English Language Arts		Activity number
Reading in Science and Technical Subjects (RST)	Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (RST.6-8.1)	3, 10, 11
	Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (RST.6-8.2)	1, 5, 8
	Determine the meaning of symbols, Key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics. (RST.6-8.4)	3, 4, 5, 8, 9
	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (RST.6-8.7)	2, 3, 5, 6, 8, 12, 13
	Compare and contrast the information gained from experiments, simulations, video, or multi- media sources with that gained from reading a text on the same topic. (RST.6-8.9)	6
Speaking and Listening (SL)	Engage effectively in a range of collaborative discussions (e.g., one-on-one, in groups, teach- er-led) with diverse partners on grade 8 topics, texts, and issues, building on others' ideas and expressing their own clearly. (SL.8.1)	1, 2
Writing in History/ Social Studies, Science, and Technological Subjects (WHST)	Write arguments focused on discipline-specific content. (WHST.6-8.1)	2, 10, 11
	Write informative/explanatory texts to examine and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (WHST.6-8.2)	3, 8, 14
	Draw evidence from informational texts to support analysis, reflection, and research. (WHST.6-8.9)	1, 2, 3, 8

Making Connections in Mathematics

This unit introduces multiple opportunities for students to engage in math practices and skills that are important grade-specific goals of the common core state standards and are also essential to the sensemaking students are doing throughout the unit. The concept of ratios (6.RP.A.1) plays a key role in the unit as students calculate and analyze the ratio of different traits first in a coin-tossing model of possible outcomes of a genetic cross (activity 4), then as they use Punnett squares to predict ratios of genotypes and phenotypes in genetic crosses (activity 5), and as they analyze the data presented in a reading about Gregor Mendel's experiments (activity 6). Students also engage with statistics and probability as they analyze and summarize numerical data they gather (6.SP.B.5) in two investigations, one a plant experiment in activity 7 and in the coin-tossing model of offspring from two parents in activity 9. In activity 10, students analyze data from four real case studies on a behavioral or physical trait in an animal, examining and interpreting graphs of statistical data (6.SP.B.4; 6.SP.A.2) in order to develop arguments about how these traits can increase reproductive success for the animals. An optional student sheet entitled "Scatterplot and Line Graphing Checklist" is provided in Appendix C: Science Skills in the Student Book for students who need additional support.

Common Core State Standards – Mathematics		Activity number
Ratios and Propor- tional Reasoning (RP)	Understand the concept of a ratio, and use ratio language to describe a ratio between two quanti- ties. (6.RP.A.1)	4, 5, 6, 7, 14
Statistics and Probability (SP)	Understand that a set of data collected to answer a statistical question has a distribution that can be described by its center, spread, and overall shape. (6.SP.A.2)	10
	Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (6.SP.B.4)	10
	Summarize numerical data sets in relation to their context. (6.SP.B.5)	7,9